收起左侧

[人工智能] 知识图谱课程2018年新某象

105
回复
  [复制链接]

13

主题

-2

回帖

247

积分

发表于 2018-7-5 00:46:00 | 显示全部楼层 |阅读模式
2017年10月24-2018年1月
课程简介:
本次的知识图谱课程主要包括三大部分:

1.  知识图谱的工程方法论。指导学员了解并掌握知识图谱的基本概念和发展历史,梳理清知识图谱的技术体系,掌握知识图谱的核心技术原理,建立知识图谱工程的方法论思维。
2.   知识图谱的实战技术。从实战出发,围绕知识表示、知识抽取、语义搜索、知识问答、知识推理、知识融合等系统性介绍知识图谱相关的实战技术,使得学员具备研发知识图谱相关应用的基础能力。
3.  知识图谱的典型应用。结合医疗、金融、电商等实际应用场景,介绍知识图谱各个技术点的实际应用落地方式,使得学员具备结合自身背景开展知识图谱技术实践的应用能力。

面向人群:
1.  希望学习知识图谱的学生;
2.  希望了解知识图谱实战技术的IT从业人员;
3.  未来希望成为知识图谱工程师的求职者;
4.  想在知识图谱方向进行深入研究者。

学习收益:

通过本课程的学习,学员将会收获:

1. 帮助学员系统性的掌握知识图谱的核心技术原理,结合近期研究成果,学习从基本概念到各个先进算法和技术的转化思路
2. 了解国内外典型的开源知识库数据及技术资源
3. 实践与理论结合,培养学员面对工程及学术问题的思考解决能力
4. 基于百科知识进行各项核心技术的实例训练,并结合医疗、金融、电商等行业应用帮助学员快速积累知识图谱工程项目经验
5. 对有志于从事知识问答工作或学术研究的学员,提供IBM Watson系统实现原理的讲解与指导



课程大纲:

第一课:  知识图谱概论         
    1.  知识图谱的起源和历史
    2.  典型知识库项目简介
    3.  知识图谱应用简介
    4.  本次课程覆盖的主要范围:知识表示与建模、知识抽取与挖掘、知识存储、知识融合、知识推理、语义搜索、知识问答和行业知识图谱应用剖析等内容。

第二课:  知识表示与知识建模         
    1.  早期知识表示简介
    2.  基于语义网的知识表示框架
         a.  RDF和RDFS
         b.  OWL和OWL2 Fragments
         c.  SPARQL查询语言
         d.  Json-LD、RDFa、HTML5 MicroData等新型知识表示
    3.   典型知识库项目的知识表示
    4.   基于本体工具(Protege)的知识建模最佳实践

第三课:  知识抽取与挖掘I
    1.  知识抽取任务定义和相关比赛:实体识别、关系抽取和事件抽取
    2.  面向结构化数据(关系数据库)的知识抽取,包括D2RQ和R2RML等转换与映射规范与技术介绍
    3.  面向半结构化数据(Web tables, 百科站点等)的知识抽取
         a.  基于正则表达式的方法
         b.  Bootstrapping和Wrapper Induction介绍
    4.  实践展示:基于百科数据的知识抽取

第四课:  知识抽取与挖掘II
    1.  面向非结构化数据(文本)的知识抽取
         a.  基于本体的知识抽取,包括NELL和DeepDive系统介绍
         b.  开放知识抽取,包括TextRunner、Reverb和OLLIE等系统介绍
    2.  知识挖掘
         a.  知识内容挖掘:实体消歧与链接
         b.  知识结构挖掘:关联规则挖掘与社区发现
         c.  知识表示学习与链接预测,包括TransE和PRA等算法介绍   

第五课:  知识存储
    1.  基于关系数据库的存储设计,包括各种表设计和索引建立策略
    2.  基于RDF的图数据库介绍
         a.  开源数据库介绍:Apache Jena、Sesame、gStore、RDF-3X等
         b.  商业数据库介绍:Virtuoso、AllegroGraph、BlazeGraph等
    3.   原生图数据库介绍,包括Neo4j、OrientDB、Titan和Cayley等
    4.  实践展示:使用Apache Jena存储百科知识,并使用Fuseki构建图谱查询服务

第六课:  知识融合
    1.  知识融合任务定义和相关竞赛:本体对齐和实体匹配
    2.  本体对齐基本流程和常用方法
         a.  基于Linguistic的匹配
         b.  基于图结构的匹配
         c.  基于外部知识库的匹配
    3.  实体匹配基本流程和常用方法
         a.  基于分块的多阶段匹配
         b.  基于规则(配置或通过学习)的实体匹配
    4.  知识融合工具介绍:包括Falcon-AO、Silk、PARIS、DEDUPE、LIMES和KnowledgeVault
    5.  实践展示:使用Falcon-AO融合百度百科与维基百科中的知识

第七课:  知识推理
    1.  本体知识推理简介与任务分类,包括概念可满足性、概念包含、实例分类和一致性检测等
    2.  本体推理方法与工具介绍
         a.  基于Tableaux运算的方法:Fact++、Racer、Pellet和Hermit等
         b.  基于一阶查询重写的方法:Ontology-based Data Access的Ontop等
         c.  基于产生式规则的方法(如Rete):Jena、Sesame和OWLIM等
         d.  基于逻辑编程(如Datalog)改写的方法:KAON2和RDFox等
     3.  实践展示:使用Jena完成百科知识上的上下位推理、缺失类别补全和一致性检测等

第八课:  语义搜索
   1.  语义搜索概述,包括Knowledge Card、Rich Snippet、Facebook Graph Search等
   2.  基于语义标注的网页搜索
         a.  Web Data Commons项目介绍
         b.  排序算法介绍,扩展BM25
   3.  基于图谱的知识搜索
         a.  本体搜索(ontology lookup)
         b.  探索式知识检索,包括查询构造、结果排序和分面(facets)推荐
   4.  知识可视化,包括本体、查询、结果等的展现方式和可视化分析
   5.  实践展示:使用ElasticSearch实现百科数据的语义搜索

第九课: 知识问答I
    1.  知识问答概述和相关数据集(QALD和WebQuestions)
    2.  知识问答基本流程
    3.  知识问答主流方法介绍
         a.  基于模板的方法,包括模板定义、模板生成和模板匹配等步骤
         b.  基于语义解析的方法,包括资源映射,逻辑表达式候选生成与排序等
         c.  基于深度学习的方法

第十课:  知识问答II
    1.  IBM Watson问答系统及核心组件详细解读
         a.  问句理解
         b.  候选答案生成
         c.  基于证据的答案排序
    2.  实践展示:面向百科知识的问答baseline实现

第十一课:  行业知识图谱应用
    1.  行业知识图谱特点
    2.  行业知识图谱应用,包括金融、医疗、数字图书馆等领域应用
    3.  行业知识图谱构建与应用的挑战
    4.  行业知识图谱生命周期定义和关键组件

下载地址:2018
游客,如果您要查看本帖隐藏内容请回复

0

主题

405

回帖

2477

积分
发表于 2018-7-5 08:59:39 | 显示全部楼层
可以的
革命尚未成功,我们还 ...

0

主题

318

回帖

2065

积分
发表于 2018-7-5 09:13:33 | 显示全部楼层
感谢分享

0

主题

35

回帖

149

积分
发表于 2018-7-5 11:36:53 | 显示全部楼层
为了未来美一点,现在必须苦一点。低头不算认输,放弃才是懦夫。

1

主题

8

回帖

3114

积分
发表于 2018-7-5 12:18:16 | 显示全部楼层
多谢分享......

1

主题

577

回帖

1585

积分
发表于 2018-7-5 15:49:56 | 显示全部楼层
《知识图谱》课程2018年新小像学院
学习心情好,签到少不 ...

1

主题

1250

回帖

3084

积分
发表于 2018-7-5 20:18:17 | 显示全部楼层
dsdsfs

0

主题

20

回帖

7679

积分
发表于 2018-7-5 21:37:02 | 显示全部楼层
arer

1

主题

97

回帖

339

积分
发表于 2018-7-5 22:25:27 | 显示全部楼层
have a look

0

主题

8

回帖

271

积分
发表于 2019-7-19 14:58:16 | 显示全部楼层
nice
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则