正文
第1课 机器学习概论
第2课 线性回归与Logistic。案例:电子商务业绩预测
第3课 岭回归,Lasso,变量选择技术。从一团乱麻中识别有用维度的技巧
第4课 降维技术。案例:业绩综合指标设计
第5课 线性分类器,Knn算法,朴素贝叶斯分类器,文本挖掘,案例:智能判断垃圾短信,通过文本挖掘给用户加标签,评论自动分析,用户流失预警
第6课 决策树,组合提升算法,bagging和adaboost,随机森林。案例:运营商用户分析
第7课 支持向量机,为什么能理解SVM的人凤毛麟角?
第8课 人工神经网络,单层感知器,线性神经网络,BP神经网络,基于梯度下降的学习算法,图像压缩和银行用户信用评估
第9课 通用逼近器径向基函数神经网络,在新观点下审视PDA和SVM。Hopfield联想记忆型神经网络。案例:字符识别,人脸识别
第10课 概率神经网络和信念贝叶斯分类器
第11课 聚类,孤立点判别。案例:推荐系统,自动品酒器,作弊识别,社会系统团体识别
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
评分
-
查看全部评分总评分 : 金币 +40
1、本帖所有言论、观点及图片均为会员个人观点,不代表本站立场。
2、本帖资源内容来源于网友、站友、作者推广引流自愿分享或其他公开网络渠道,仅用于交流与学习参考。
3、如本帖内容涉及任何版权或知识产权问题,请立即点论坛右侧邮件图标联系我们,我们将在核实后及时删除,并致以歉意。
4、本站资料仅供站友个人学习参考,禁止以任何形式进行传播或商用;如下载学习,请务必在 24 小时内删除。